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A Running Spectral Index in Supersymmetric Dark-Matter

Models with Quasi-Stable Charged Particles
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We show that charged-particles decaying in the early Universe can induce a scale-dependent or
‘running’ spectral index in the small-scale linear and nonlinear matter power spectrum and discuss
examples of this effect in minimal supersymmetric models in which the lightest neutralino is a
viable cold-dark-matter candidate. We find configurations in which the neutralino relic density is
set by coannihilations with a long-lived stau, and the late decay of staus partially suppresses the
linear matter power spectrum. Nonlinear evolution on small scales then causes the modified linear
power spectrum to evolve to a nonlinear power spectrum similar (but different in detail) to models
parametrized by a constant running αs = dns/dlnk by redshifts of 2 to 4. Thus, Lyman-α forest
observations, which probe the matter power spectrum at these redshifts, might not discriminate
between the two effects. However, a measurement of the angular power spectrum of primordial
21-cm radiation from redshift z ≈ 30–200 might distinguish between this charged-decay model and
a primordial running spectral index. The direct production of a long-lived charged particle at future
colliders is a dramatic prediction of this model.

PACS numbers: 98.80.Cq, 98.80.Es, 95.35+d, 12.60.Jv, 14.80.Ly

I. INTRODUCTION

While recent cosmological observations provide con-
vincing evidence that nonbaryonic dark matter exists
[1], we do not know the detailed particle properties of
the dark matter, nor the particle spectrum of the dark
sector. There has been considerable phenomenological
effort towards placing model-independent limits on the
possible interactions of the lightest dark-matter parti-
cle (LDP)1 in an attempt to try and identify candidates
within detailed particle theories or rule out particular
candidate theories. For instance, models with stable
charged dark matter have been ruled out [2], while signif-
icant constraints have been made to dark-matter models
with strong interactions [3], self-interactions [4, 5], and
a millicharge [6, 7]. Recently, it was shown that a neu-
tral dark-matter particle with a relatively large electric or
magnetic dipole moment remains a phenomenologically
viable candidate [8].

Concurrent with this phenomenological effort, theo-
rists have taken to considering physics beyond the stan-
dard model in search of a consistent framework for viable
dark-matter candidates. The leading candidates, those
that produce the correct relic abundance and appear in
minimal extensions of the standard model (often for inde-
pendent reasons), are the axion [9] and weakly interact-
ing massive particles (WIMPs), such as the neutralino,
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1 In supersymmetric models the LDP is the lightest supersymmet-

ric particle (LSP), but we adopt this more general notation unless
we are speaking about a specific supersymmetric model.

the lightest mass eigenstate from the superposition of the
supersymmetric partners of the U(1) and SU(2) neutral
gauge bosons and of the neutral Higgs bosons [10, 11].
However, other viable candidates have also been consid-
ered recently, such as gravitinos or Kaluza-Klein gravi-
tons produced through the late decay of WIMPs [12, 13].
These latter candidates are an interesting possibility be-
cause the constraints to the interactions of the LDP do
not apply to the next-to-lightest dark-matter particle
(NLDP), and the decay of the NLDP to the LDP at
early times may produce interesting cosmological effects;
for instance, the reprocessing of the light-element abun-
dances formed during big-bang nucleosynthesis [14, 15],
or if the NLDP is charged, the suppression of the matter
power spectrum on small scales and thus a reduction in
the expected number of dwarf galaxies [16].

In this paper we describe another effect charged
NLDPs could have on the matter power spectrum. If
all of the present-day dark matter is produced through
the late decay of charged NLDPs, then, as discussed in
Ref. [16], the effect is to essentially cut off the matter
power spectrum on scales that enter the horizon before
the NLDP decays. However, if only a fraction fφ of the
present-day dark matter is produced through the late
decay of charged NLDPs, the matter power spectrum is
suppressed on small scales only by a factor (1−fφ)2. This
induces a scale-dependent spectral index for wavenum-
bers that enter the horizon when the age of the Universe
is equal to the lifetime of the charged particles. What
we show below is that, for certain combinations of fφ

and of the lifetime of the charged particle τ , this sup-
pression modifies the nonlinear power spectrum in a way
similar (but different in detail) to the effect of a con-
stant αs ≡ dns/dlnk 6= 0. Although these effects are
different, constraints based on observations that probe
the nonlinear power spectrum at redshifts of 2 to 4, such
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as measurements of the Lyman-α forest, might confuse
a running index with the effect we describe here even if
parametrized in terms of a constant αs. This has signif-
icant implications for the interpretation of the detection
of a large running of the spectral index as a constraint
on simple single-field inflationary models. The detection
of a unexpectedly large spectral running in future obser-
vations could instead be revealing properties of the dark-
matter particle spectrum in conjunction with a more con-
ventional model of inflation. We note that the Sloan
Digital Sky Survey Lyman-α data [17] has significantly
improved the limits to constant-αs models compared to
previous measurements alone [1, 18, 19]. A detailed study
of the (τ ,fφ) parameter space using these and other cos-
mological data would also provide interesting limits to
the models we discuss here.

While, even with future Lyman-α data, it may be dif-
ficult to discriminate the effect of a constant running of
the spectral index from a scale-dependent spectral index
due to a charged NLDP, other observations may never-
theless discriminate between the two scenarios. Future
measurements of the power spectrum of neutral hydro-
gen through the 21cm-line might probe the linear matter
power spectrum in exquisite detail over the redshift range
z ≈ 30−200 at comoving scales less than 1 Mpc and per-
haps as small as 0.01 Mpc [20]; such a measurement could
distinguish between the charged-particle decay scenario
we describe here and other modifications to the primori-
dal power spectrum. If, as in some models we discuss
below, the mass of these particles is in reach of future
particle colliders the signature of this scenario would be
spectacular and unmistakable—the production of very
long-lived charged particles that slowly decay to stable
dark matter.

Although we describe the cosmological side of our cal-
culations in a model-independent manner, remarkably,
there are configurations in the minimal supersymmetric
extension of the standard model (MSSM) with the right
properties for the effect we discuss here. In particular, we
find that if the LSP is a neutralino quasi-degenerate in
mass with the lightest stau, we can naturally obtain, at
the same time, LDPs providing the correct dark matter
abundance Ωχh2 = 0.113 [1] and NLDPs with the long
lifetimes and the sizable densities in the early Universe
needed in the proposed scenario. Such configurations
arise even in minimal supersymmetric schemes, such as
the minimal supergravity (mSUGRA) scenario [21] and
the minimal anomaly-mediated supersymmetry-breaking
(mAMSB) model [22]. This implies that a detailed study
of the (τ ,fφ) parameter space using current and future
cosmological data may constrain regions of the MSSM
parameter space that are otherwise viable. Furthermore,
we are able to make quantitative statements about test-
ing the scenario we propose in future particle colliders or
dark matter detection experiments.

The paper is organized as follows: We first review in
Section II how the standard calculation of linear per-
turbations in an expanding universe must be modified

to account for the effects of a decaying charged species,
calculate the linear matter power spectrum and discuss
the constraints to this model from big bang nucleosyn-
thesis (BBN) and the spectrum of the cosmic microwave
background (CMB). In Section III we briefly discuss how
we estimate the nonlinear power spectrum from the lin-
ear power spectrum and present several examples. In
Section IV we discuss how measurements of the angu-
lar power spectra of the primordial 21-cm radiation can
be used to distinguish this effect from other modifica-
tions to the primordial power spectrum. In Section V
we describe how this scenario can be embedded in a par-
ticle physics model, concluding that the most appealing
scheme is one where long lifetimes are obtained by con-
sidering nearly degenerate LDP and NLDP masses. In
Section VI we compute the lifetimes of charged next-to-
lightest supersymmetric particles (NLSPs) decaying into
neutralino LSPs, and show that, in the MSSM, the role
of a NLDP with a long lifetime can be played by a stau
only. In Section VII we estimate what fraction of charged
to neutral dark matter is expected in this case, while in
Section VIII we describe how consistent realizations of
this scenario can be found within the parameter space of
mSUGRA and mAMSB. Finally, in Section IX we discuss
the expected signatures of this scenario at future parti-
cle colliders, such as the large hadron collider (LHC),
and prospects for detection in experiments searching for
WIMP dark matter. We conclude with a brief summary
of our results in Section X.

II. CHARGED-PARTICLE DECAY

In this section we discuss how the decay of a charged
particle φ (the NLDP) to a neutral particle χ (the LDP)
results in the suppression of the linear matter power spec-
trum on small scales.

As the φ particles decay to χ particles, their comoving
energy density decays exponentially as

ρφa3 = mφnφ0
e−t/τ , (1)

increasing the comoving energy density of χ particles as

ρχa3 = mχnχ0
(1 − fφe−t/τ ) . (2)

Here nχ0
= Ωχρcrit/mχ is the comoving number density

of dark matter, and nφ0
= fφnχ0

is the comoving number
density of dark matter produced through the decay of φ
particles, a is the scale factor, and t is the cosmic time.

Since the φ particles are charged, they are tightly cou-
pled to the ordinary baryons (the protons, helium nuclei,
and electrons) through Coulomb scattering. It is there-
fore possible describe the combined φ and baryon fluids
as a generalized baryon-like component β as far as per-
turbation dynamics is concerned. We thus denote by
ρβ = ρb + ρφ the total charged-particle energy density at
any given time. At late times, after nearly all φ particles
have decayed, ρβ ≃ ρb.
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FIG. 1: Shown is ∆2(k) = k3P (k)/2π2, the dimensionless
matter power spectrum per logarithmic interval for the canon-
ical ns = 1 ΛCDM model (dashed), for a model with τ = 20 yr
and fφ = 1/7 (long-dashed), for a model with τ = 13 yr and
fφ = 1/5 (solid), and for a model with τ = 3 yr and fφ = 1/2
(dotted). Modes that enter the horizon be before the φ par-
ticles decay are suppressed by a factor of (1 − fφ)2.

The relevant species whose perturbation dynamics are
modified from the standard case are the stable dark mat-
ter (subscript χ), the charged species (subscript β), and
the photons (subscript γ). By imposing covariant con-
servation of the total stress-energy tensor, accounting for
the Compton scattering between the electrons and the
photons, and linearizing about a Friedmann-Robertson-
Walker (FRW) Universe we arrive at the equations de-
scribing the evolution of linear fluid perturbations of
these components in an expanding Universe. In the syn-
chronous gauge, for the ‘β’ component, the perturbation
evolution equations are

δ̇β = −θβ − 1

2
ḣ , (3)

and

θ̇β = − ȧ

a
θβ + c2

sk
2δβ +

4ργ

3ρβ
aneσT (θγ − θβ) . (4)

Here and in what follows, δX = δρX/ρX is the fractional
overdensity and θX = ikVX is the divergence of the bulk
velocity in Fourier space of a given species X . An over-
dot represents a derivative with respect to the conformal
time. The number density of electrons is ne, while σT

is the Thomson cross section. Because the φ particles

and the baryons share a common bulk velocity and over-
density,2 these equations are identical to the standard
perturbation equations for the baryons with the replace-
ment b → β (see, for example, Ref. [23]). For the dark
matter we find that

δ̇χ = −θχ − 1

2
ḣ + λm

ρφ

ρχ

a

τ
(δβ − δχ) , (5)

and

θ̇χ = − ȧ

a
θχ + λm

ρφ

ρχ

a

τ
(θβ − θχ) , (6)

where λm ≡ mχ/mφ = (1 + ∆m/mχ)−1. The modifica-
tions to the photon perturbation evolution are negligibly
small because φ decays during the radiation-dominated
epoch when ρφ ≪ ργ and, as discussed below, for viable
models λm ≃ 1 to prevent unreasonably large spectral
distortions to the CMB.

Combining these equations with the (unmodified)
equations for the neutrino perturbations we can solve for
the linear power spectrum of matter fluctuations in this
model. We have solved these equations using a modified
version of cmbfast [24]. In Fig. 1 we show the linear mat-
ter power spectrum in this model for several values of the
φ lifetime τ and fraction fφ. As shown in this Figure, the
small-scale density modes that enter the horizon before
the φ particles decay (when the age of the Universe is
less than τ) are suppressed relative to the standard case
by a factor of (1 − fφ)2.

Since the decaying particles are charged, the produc-
tion of the LDP will always be accompanied by an elec-
tromagnetic cascade. The latter could in principle repro-
cess the light elements produced during BBN, or induce
unreasonably large spectral distortions to the CMB. We
show here that in fact these effects are small for the mod-
els discussed in this paper.

The energy density released by the decay of φ particles
can be parametrized as

ζEM = εEMfφYχ , (7)

where εEM is the average electromagnetic energy released
in a φ decay and Yχ ≡ nχ/nγ is the dark-matter to
photon ratio. In the specific models we discuss below,
εEM ≈ ∆m/3, and

Yχ =
Ωχρc

mχnγ
= 3 × 10−12

(
TeV

mχ

)(
Ωχ

0.23

)
. (8)

2 This assumes adiabatic initial conditions. Note that the pertur-
bation Sφβ ≡ δφ − δβ will generally evolve away from zero in
an arbitrary gauge, even when starting with the adiabatic initial
condition Sφβ(0) = 0, due to gradients in the proper time. It
is a special simplifying property of the synchronous gauge that
Sφβ = 0 for all time for adiabatic initial conditions.
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This yields

ζEM ≈ fφ
∆m

mχ

(
Ωχ

0.23

)
eV . (9)

In the models we discuss below, ∆m/mχ ∼ 10−4, and
fφ ≤ 1/2, giving ζEM . 5 × 10−5 eV. The limit derived
from too much reprocessing of the BBN light element

abundances is ζEM . 3.8 τ
1/4
yr × 10−3 eV [25, 26] where

τyr = τ/(1 yr), so we are safely below this bound.
For τyr . 300, electromagnetic energy injection will

result in a chemical-potential distortion to the CMB of
[27]

µ = 4.5 τ1/2
yr × 10−3

(
ζEM

eV

)
e−0.128τ−5/4

yr (10)

and so we expect µ . 2.0×10−7 — 2.3×10−6 for lifetimes
between τyr = 1 — 100, below the current limit of µ <
9 × 10−5 [28].

III. THE NONLINEAR POWER SPECTRUM

As density perturbations grow under the influence of
gravity, linear evolution ceases to describe their growth
and nonlinear effects must be taken into account. On
large scales, where density perturbations have had insuf-
ficient time to become nonlinear, the linear matter power
spectrum describes the statistics of density fluctuations.
However, on small scales the full nonlinear matter power
spectrum is required.

In order to calculate the nonlinear power spectrum
for a given model we have used the recently devised
halofit method [29]. This method uses higher-order
perturbation theory in conjunction with the halo model
of large-scale structure to determine the nonlinear power
spectrum given a linear power spectrum. It has been
shown to accurately reproduce the nonlinear power spec-
tra of standard N-body simulations and, unlike the ear-
lier mappings such as the Peacock and Dodds formula
[30], it is applicable in cases (like we consider here) when
∆2(k) = k3P (k)/2π2 is not a monotonic function. In par-
ticular we have checked that it approximately reproduces
the shapes of the nonlinear power spectra determined in
Ref. [31] through N-body simulations in models where
the linear power spectrum is completely cut off on small
scales. As we are discussing here less drastic alterations
to the linear power spectrum, we believe the halofit

procedure provides an estimate of the nonlinear power
spectrum adequate for illustrating the effect we describe
in this paper. Any detailed study would require a full
N-body simulation.

In Figs. 2–5 we show both the linear and nonlinear
matter power spectra at redshift z = 4 (data from mea-
surements the Lyman-α forest probe redshifts 2–4 at
wavenumbers k/h ∼ 0.1–10 Mpc−1) for a charged-decay
model, and for a model with a running spectral index.

FIG. 2: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2,
the nonlinear (upper curves) and linear (lower curves) dimen-
sionless matter power spectra per logarithmic interval for the
canonical ns = 1 ΛCDM model (dashed), for an ns = 1 model
with τ = 20 yr and fφ = 1/7 (solid), and for a running-index
model with ns = 1.00 and αs = −0.025 (dotted). Although
the linear power spectra differ significantly in these latter two
models, nonlinear evolution causes them to have nearly de-
generate nonlinear power spectra for k/h & 1.5 Mpc−1.

Although these models have different linear power spec-
tra, nonlinear gravitational evolution causes these models
to have nearly identical nonlinear power spectra over in-
teresting ranges of wavenumbers. The lifetimes shown
were chosen because they produce effects on scales that
can be probed by measurements of the Lyman-α forest,
while the values fφ = (1/2, 1/4, 1/5, 1/7) were chosen be-
cause they arise in the supersymmetric models we discuss
below.

In Fig. 6 we show the current constraints on the (ns,αs)
parameter space from WMAP and SDSS Lyman-α for-
est data. The constant-αs models we have compared
our charged-decay model to lie within the WMAP+lya
contours shown in the Figure. Since, in each case, the
charged-decay model tends to interpolate between the
standard ΛCDM model on larger scales (in particular
on the scales probed by the CMB) and a constant-αs

running-index model on smaller scales, and both of them
are allowed by these data, we expect the charged-decay
models we have considered in Figs. 2–5 to be consistent
with current data as well. We leave for future work the
task of using a combined analysis of Lyman-α forest and
other cosmological measurements to put limits directly
on the (fφ,τ) parameter space (and thus on the parame-
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FIG. 3: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2,
the nonlinear (upper curves) and linear (lower curves) dimen-
sionless matter power spectra per logarithmic interval for the
canonical ns = 1 ΛCDM model (dashed), for an ns = 1 model
with τ = 13 yr and fφ = 1/5 (solid), and for a running-index
model with ns = 1.00 and αs = −0.025 (dotted). Nonlinear
evolution causes these two models to have overlapping non-
linear power spectra for 2 Mpc−1 . k/h . 10 Mpc−1.

ter space of the MSSM models we discuss below).

IV. THE 21 CM POWER SPECTRUM

After recombination and the formation of neutral hy-
drogen, the gas in the Universe cools with respect to the
CMB temperature TCMB starting at at a redshift z ∼ 200.
The spin temperature Ts of the gas, which measures the
relative populations of the hyperfine levels of the ground
state of hydrogen separated by the 21-cm spin-flip transi-
tion, remains collisionally coupled to the temperature Tb

of the baryons until a redshift z ∼ 30 when collisions be-
come inefficient and the spin temperature rises to TCMB.
There is thus a window between z ∼ 30–200 in which
neutral hydrogen absorbs the CMB at a wavelength of
21 cm. It has recently been suggested that the angular
fluctuations in the brightness temperature of the 21-cm
transition within this window may be measured with fu-
ture observations and used to constrain the matter power
spectrum at these very high redshifts [20].

At redshifts z & 30, the matter power spectrum on the
scales k/h ∼ 1−100 Mpc−1 of interest here are still in the
linear regime. As discussed in Ref. [20], due to the un-

FIG. 4: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2,
the nonlinear (upper curves) and linear (lower curves) dimen-
sionless matter power spectra per logarithmic interval for the
canonical ns = 1 ΛCDM model (dashed), for an ns = 1 model
with τ = 15 yr and fφ = 1/4 (solid), and for a running-index
model with ns = 0.96 and αs = −0.025 (dotted). Nonlinear
evolution causes the charged-decay model to match the canon-
ical ΛCDM model for k/h . 1.5 Mpc−1 and the running-index
model for k/h & 1.5 Mpc−1.

precedented wealth of potential information contained in
these 21-cm measurements, models with a running index
or other small-scale modifications of the matter power
spectrum can in principle be distinguished from each
other. Even if the charged-particle lifetime is so small
that no significant modifications to the power spectrum
occur on scales probed by other cosmological observa-
tions (like the model shown in Fig. 5), 21-cm observa-
tions might detect or constrain such effects on the linear
matter power spectrum.

V. THE LONG LIVED CHARGED

NEXT-TO-LIGHTEST DARK-MATTER

PARTICLE

From the particle-physics point of view, the setup we
have introduced may seem ad hoc. We need a pair of
particles that share a conserved quantum number and
such that the lightest, the LDP, is neutral and stable,
while the other, the NLDP, is coupled to the photon
and quasi-stable, in order to significantly contribute to
the cosmological energy density at an intermediate stage
in the structure-formation process. Such a picture re-
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FIG. 5: Shown at a redshift z = 4 are ∆2(k) = k3P (k)/2π2,
the nonlinear (upper curves) and linear (lower curves) dimen-
sionless matter power spectra per logarithmic interval for the
canonical ns = 1 ΛCDM model (dashed), for an ns = 1 model
with τ = 1 yr and fφ = 1/2 (solid), and for a running-index
model with ns = 0.96 and αs = −0.025 (dotted). Despite the
drastic change in the linear power spectrum nonlinear evo-
lution causes the charged-decay model to match the canoni-
cal ΛCDM model for k/h . 8 Mpc−1 and the running-index
model for k/h & 8 Mpc−1.

quires three ingredients: (i) the relic abundance of the
LDP must be compatible with the CDM component; (ii)
the abundance of the NLDP must be at the correct level
(namely, ∼ 1/5 the total dark-matter density); and (iii)
the NLDP must have the proper lifetime (i.e., τ ∼ 10 yr).

Let us start with the last requirement. One way to get
the required lifetime is to introduce a framework with
strongly-suppressed couplings. One such possibility is,
for instance, to assume that the LDP is a stable super-
weakly–interacting dark-matter particle, such as a grav-
itino LSP in R-parity–conserving supersymmetric theo-
ries or the Kaluza-Klein first excitation G1 of the gravi-
ton in the universal extra-dimension scenario [32]. The
NLDP can have non-zero electric charge, but at the same
time a super-weak decay rate into the LDP (with the
latter being the only allowed decay mode). In models
of gauge-mediated supersymmetry breaking, this might
indeed be the case with a stau NLSP decaying into a grav-
itino LSP. In this specific example, we have checked that,
to retrieve the very long lifetimes we introduced in our
discussion, we would need to impose a small mass split-
ting between the NLSP and LSP, as well as to raise the
mass scale of the LSP up to about 100 TeV. This value
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FIG. 6: We reproduce here (with permission) Fig. 3 from
Ref. [17] which illustrates the current constraints on the pa-
rameter αs. The charged-decay models produce changes to
the nonlinear power spectrum similar to constant αs 6= 0 mod-
els within the WMAP+Lya contour shown here and the ex-
amples we show in Figs. 2–5 are denoted by the black circles
(ours). However, the charged-decay models leave the CMB
angular power spectra unaltered (corresponding to models
with αs = 0 on a line passing through the black cross). Match-
ing to allowed constant-αs models is conservative in this re-
spect, and we thus expect the charged-decay models we have
discussed in Figs. 2–5 to be consistent with current data.

is most often considered uncomfortably large for a SUSY
setup, and it also makes thermal production of LDPs or
NLDPs unlikely, being near a scale at which the unitary
bound [33] gets violated. Without thermal production
one would need to invoke first a mechanism to wipe out
the thermal components and then provide a viable non-
thermal production scheme that fixes the right portion of
LDPs versus NLDPs. Finally, such heavy and extremely
weakly-interacting objects would evade any dark-matter
detection experiment, and would certainly not be pro-
duced at the forthcoming CERN Large Hadron Collider
(LHC). This would then be a scheme that satisfies the
three ingredients mentioned above, but that cannot be
tested in any other way apart from cosmological obser-
vations.

An alternative (and to us, more appealing) scenario
is one where long lifetimes are obtained by considering
nearly degenerate LDP and NLDP masses. In this case,
decay rates become small, without suppressed couplings,
simply because the phase space allowed in the decay
process gets sharply reduced. Sizeable couplings imply
that, in the early Universe, the LDP and NLDP effi-
ciently transform into each other through scattering from
background particles. The small mass splitting, in turn,
guarantees that the thermal-equilibrium number densi-
ties of the two species are comparable. To describe the
process of decoupling and find the thermal relic abun-
dance of these species, the number densities of the two
have to be traced simultaneously, with the NLDP, be-
ing charged, playing the major role. This phenomenon
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is usually dubbed as coannihilation [34] and has been
studied at length, being ubiquitous in many frameworks
embedding thermal-relic candidates for dark matter, in-
cluding common SUSY schemes.

We will show below that sufficiently long lifetimes may
be indeed obtained in the minimal supersymmetric stan-
dard model (MSSM), when the role of the NLDP is
played by a stau nearly degenerate in mass with the
lightest neutralino (with the former being the stable
LSP and the thermal-relic CDM candidate we will fo-
cus on in the remainder of our discussion). A setup of
this kind appears naturally, e.g., in minimal supergravity
(mSUGRA) [36]. This is the SUSY framework with the
smallest possible parameter space, defined by only four
continuous entries plus one sign, and hence also one of
the most severely constrained by the requirement that
the neutralino relic density matches the value from cos-
mological observations. Neutralino-stau coannihilations
determine one of the allowed regions, on the border with
the region where the stau, which in the mSUGRA scheme
is most often the lightest scalar SUSY particle, becomes
lighter than the neutralino. Although a stau-neutralino
mass degeneracy is not “generic” in such models, this
scenario is economical in that the requirements of a long
NLDP lifetime and of comparable LDP and NLDP relic
abundances are both consequences of the mass degener-
acy. In this sense, evidence for a running spectral in-
dex or any of the other observational features we discuss
would simply help us sort out which configuration (if any)
Nature has chosen for SUSY dark matter.

VI. LIFETIMES OF CHARGED NLSPS IN THE

MSSM

We refer to a MSSM setup in which the lightest neu-
tralino χ0

1 is the lightest SUSY particle. The charged
particles that could play the role of the NLDP include:
(1) scalar quarks, (2) scalar charged leptons, and (3)
charginos. We now discriminate among these cases by
the number of particles in the final states for the decay
of NLSPs to neutralino LSPs.

Scalar quarks and leptons have as their dominant de-
cay mode a prompt two-body final state; i.e., S̃ → χ0

1S,

where we have labeled S̃ the SUSY scalar partner of
the standard-model fermion S. A typical decay width
for this process is O(1) GeV, corresponding to a life-
time O(10−24) s. This holds whenever this final state
is kinematically allowed; i.e., if mS̃ > mS + mχ0

1
. If

it is kinematically forbidden, there are two possibili-
ties: squarks may either decay through CKM-suppressed
flavor-changing processes or through four-body decays.
For instance, the stop decay may proceed through t̃ →
χ0

1c or t̃ → χ0
1bf f̄ ′. On the other hand, within the same

minimal–flavor-violation framework, scalar leptons are
not allowed to decay in flavor-changing two-body final
states, and only the four-body decay option remains.

The case for the chargino is different because this

NLSP decay has a three-body final state, either with two
quarks bound in a meson state — i.e., χ+

1 → χ0
1π

+ — or
with a leptonic three body channel — i.e., χ+

1 → χ0
1l

+νl.
The latter final state becomes dominant, in particular,
for electron-type leptons, l = e, if the mass splitting be-
tween NLSP and LSP becomes small.

We have listed all decay topologies as these are es-
pecially relevant when discussing the limit in which we
force a reduction of the allowed decay phase-space vol-
ume; i.e., the limit in which the NLSP and LSP are quasi-
degenerate in mass. Here we can also safely assume that
the masses of the final-state particles, apart from the neu-
tralino, are much smaller than the mass of the decaying
particle. We can then consider the limit of a particle of
mass mχ0

1
+ ∆m decaying into a χ0

1 and n − 1 massless
final states, and derive an analytical approximation to
the behavior of the final-state phase space dφ(n) and of
the decay width Γ(n) as functions of ∆m. In the case of
two-body decays, the phase space reads

dφ(2) =
dΩ

32π2


1 −

(
mχ0

1

mχ0
1
+ ∆m

)2

 ∝ ∆m. (11)

On the other hand, a recursive relation between dφ(n)

and dφ(n−1) based on the invariant mass of couples of
final states yields

dφ(n)(∆m) ∝ dφ(n−1)(∆m) ×
∫ ∆m

dµ(dφ(2))(µ)

∝ (∆m)2(n−2)+1. (12)

The dependence of the decay width Γ(n) on ∆m must,
however, take into account not only the phase-space de-
pendence, but also the behavior of the amplitude squared
M(n) of the processes as a function of ∆m. The occur-
rence of a massless final state yields, in the amplitude
squared, a factor that scales linearly with the momenta
circulating in the Feynman diagram. One therefore has
the further factor

M(n) ∝ (∆m)n−1. (13)

Finally, we have

Γ(n) ∝ M(n) × dφ(n) ∝ (∆m)3n−4, (14)

i.e., the lifetime to decay to a two-body final state scales
like τ (2) ∝ (∆m)−2, while for a four-body decay we have
τ (4) ∝ (∆m)−8.

Reducing the NLSP mass splitting ∆m one may hope
to obtain “cosmologically relevant” NLSP lifetimes. For
scalar quarks, this is not quite the case, as two-body final
states always dominate, and even for amplitudes that are
CKM-suppressed, the scaling with ∆m is too shallow,
and the resulting lifetimes are rather short, even for very
small mass splittings.

The situation is slightly more favorable for charginos,
whose three-body decay width is approximately equal to
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G2
F

(2π)3
16

15
(∆m)5. (15)

At tree level and in the limit of pure Higgsino-like
or Wino-like states, the lightest neutralino and light-
est chargino are perfectly degenerate in mass. How-
ever, when one takes into account loop corrections to
the masses, ∆m usually turns out to be larger than a
few tens of MeV; see, e.g., [37, 38]. This translates into
an absolute upper limit on the chargino lifetime of about
10−(2−3) s.

Finally, in the case of sleptons l̃, the interesting regime
is when ∆m < ml and only four-body decays are allowed.
For example, for the lightest stau τ̃1, the processes

τ̃1 → χ0
1 ντ f f̄ ′, (16)

with

(f̄ ′, f) = (ν̄µ, µ), (ν̄e, e), (ū, d), (c̄, s), (17)

where, depending on ∆m, only final states above the
kinematic threshold are included. In this case, ∆m can
be safely taken as a free parameter of the theory: in
most scenarios the gaugino mass parameter setting the
neutralino mass for bino-like neutralinos, and the scalar
soft mass parameter setting the stau mass, are usually as-
sumed to be independent; analogously, there are models
in which the µ parameter setting the mass for a Higgsino-
like neutralino, and scalar soft mass parameter are un-
related. A similar picture applies to the smuon, though
lifetimes start to be enhanced at much smaller mass split-
tings (mµ instead of mτ ), and it is theoretically difficult

to figure out a scenario in which the lightest smuon is
lighter than the lightest stau.

The scalings we have sketched are summarized in
Fig. 7, where we plot lifetimes for a stop (CKM-
suppressed), a chargino, and a stau as a function of ∆m.
The decaying-particle masses have been set to 1 TeV,
and the ∆m range is between the electron and the tau
mass. The lifetimes of the stop and of the chargino have
been computed with SDECAY [39]. Some details on the
computation of the stau lifetime are given below. Notice
that the scaling of Eq. (14) is accurately reproduced for
all cases. The bottom line is that indeed the lightest stau

can play the role of the NLDP with a cosmologically rel-
evant lifetime, and that the stau is the only particle in
the MSSM for which this can be guaranteed by adjusting
only the LDP-NLDP mass splitting.

VII. THE RELATIVE ABUNDANCE OF THE

CHARGED NLSP

The next step is to determine the relic density of the
NLSP and LSP in the early stages of the evolution of the
Universe. As we have already mentioned, we are going
to consider thermal production. We briefly review here
how to compute the evolution of number densities with
coannihilation [34, 35].

Consider a setup with N supersymmetric particles χ1,
χ2, ... χN , each with mass mi and number of inter-
nal degrees of freedom gi. The ordering is such that
m1 ≤ m2 ≤ · · · ≤ mN . In the evolution equations, the
processes that change the number density of SUSY par-
ticles i are of three kinds:

(a) χi χj ↔ Xf
a , ∀ j ,

(b) χi X i
b ↔ χj Xf

b , ∀ j 6= i ,
(c) χj ↔ χi Xf

c , ∀ j > i ,

(18)

where Xa, X i
b, Xf

b , and Xf
c are (sets of) standard-model

(SM) particles. In practice, the relevant processes one
should include are those for SM particles that are in ther-
mal equilibrium. Assuming the distribution function for
each particle k is the same as for the equilibrium distri-
bution function,

fk(Ek) ∝ f eq
k (Ek) =

1

exp(Ek/T ) ± 1
, (19)

and invoking the principle of detailed balance, the Boltz-
mann equation for the evolution of the number density
of SUSY particle i, ni = gi/(2π)3

∫
d3pfi(E), normalized

to the entropy density of the Universe, Yi = ni/s, as a
function of the variable x ≡ m1/T (with T the Universe
temperature; this is equivalent to describing the evolu-
tion in time) is given by
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x

ĝ(x) Y eq
i

dYi

dx
= −

∑

j

〈σijvij〉neq
j

H

(
Yi Yj

Y eq
i Y eq

j

− 1

)
−
∑

j 6=i

[
∑

X〈σiX→jviX→j〉neq
X ]

H

(
Yi

Y eq
i

− Yj

Y eq
j

)
(20)

+
∑

j>i

Γj→i

H

(
Yj

Y eq
i

−
Yi Y eq

j

(Y eq
i )2

)
−
∑

j<i

Γi→j

H

(
Yi

Y eq
i

− Yj

Y eq
j

)
.

In this equation, analogously to Yk, we have defined
Y eq

k ≡ neq
k /s, the ratio of the equilibrium number den-

sity of species k (at temperature x) to the entropy
density. On the left-hand side, we introduced ĝ(x) ≡
[1+T/(3 geff) dgeff/dT ]−1 with geff(T ) being the effective
degrees of freedom in the entropy density. The function
ĝ(x) is close to 1 except for temperatures at which a back-
ground particle becomes nonrelativistic. On the right-
hand side, the last two terms contain factors in Γk→l that
label the partial decay width of a particle k in any final
state containing the particle l; in our discussion they play
a role just at late times when NLSPs decay into LSPs,
giving the scaling we have used in Eq. (1). The first two
terms refer, respectively, to processes of the kind (a) and
(b) in Eq. (18), including all possible SM final and initial
states. The symbol 〈σabvab〉 indicates a thermal average
of the cross section σabvab; i.e.,

〈σabvab〉 =
1

neq
a neq

b

∫
d3pad3pbf

eq
a (Ea)f eq

b (Eb)σabvab .

(21)
As is evident from the form we wrote the Boltz-
mann equation, interaction rates have to be compared
with the expansion rate H of the Universe. In gen-
eral, over a large range of intermediate temperatures,
the 〈σiX→jviX→j〉neq

X terms will be larger than the
〈σijvij〉neq

j terms, since we expect the cross sections to
be of the same order in the two cases, but the scatter-
ing rates will be more efficient as long as they involve
light background particles X with relativistic equilibrium
densities neq

X that are much larger than the nonrelativis-
tic Maxwell-Boltzmann–suppressed equilibrium densities
neq

j for the more massive particles j. This implies that
collision processes go out of equilibrium at a smaller tem-
perature, or later time, than pair-annihilation processes.
Writing explicitly the expression for d/dx(Yi/Y eq

i −
Yk/Y eq

k ), in which Maxwell-Boltzmann–suppressed terms
and terms in mass splitting over mass scale can be ne-
glected, one finds explicitly that in the limit that colli-
sional rates are much larger than the expansion rate, for
any i and k, Yi(x)/Y eq

i (x) = Yk(x)/Y eq
k (x), or equiva-

lently,

Yi(x) =
Y (x)

Y eq(x)
Y eq

i (x) , (22)

with Y (x) ≡
∑

k Yk(x) and Y eq(x) ≡
∑

k Y eq
k (x). At

the temperature Tcfo, when
∑

X〈σiX→kviX→k〉neq
X ≃ H ,

collision processes decouple and the relative number den-
sities become frozen to about

ni(T )

nk(T )
=

neq
i (Tcfo)

neq
k (Tcfo)

≃ gi

gk

(
mi

mk

)3/2

exp

(
mk − mi

Tcfo

)
,

(23)
up to the time (temperature) at which heavier particles
decay into lighter ones.

The sum Y (x) of the number densities has instead de-
coupled long before. Eq. (23) is the relation that is imple-
mented to find the usual Boltzmann equation [34, 35] for
the sum over number densities of all species compared
to the sum of equilibrium number densities, and that
shows that the decoupling for Y occurs when the total
effective annihilation rate becomes smaller than the ex-
pansion rate, at a temperature Tafo that, as mentioned
above, is much larger than Tcfo.

To get an estimate for Tcfo, we can take, whenever a
channel is kinematically allowed, the (very) rough s-wave
limit,

σi→kvi→k ∼ σikvik ∼ 〈σikvik〉 ∼
3 · 10−27 cm3 s−1

Ωχh2
,

(24)
where an approximate relation between annihilation rate
and relic density has been used [10]. There are then
two possibilities depending on whether (i) the back-
ground particle X enforcing collisional equilibrium has
a mass much larger than the mass splitting ∆m be-
tween the SUSY particles involved, or (ii) the opposite
regime holds. In the first case we find that Tcfo ∼
mX/(10 − 15), roughly the temperature at which X it-
self (except for neutrinos) decouples from equilibrium.
From Eq. (23) we find that ni/nk ≃ gi/gk; i.e., they
have comparable abundances. In the opposite case,
we find instead that Tcfo ∼ ∆m/(10 − 15) and hence

ni/nk ≃ gi/gk

(
mi

mk

)3/2

exp [(10 − 15)sign(mk − mi)];

i.e., the abundance of the heavier particle is totally neg-
ligible compared to the lighter one.

Long-lived stau NLSPs are kept in collisional equilib-
rium with neutralinos by scattering on background τ±

and emission of a photon. In this case we are clearly in
the limit (i), as mτ̃1

− mχ0
1
≪ mτ . Since the number of

internal degrees of freedom for both staus and neutrali-
nos is 2, we find that the fraction of charged dark matter
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in this model is

fφ =
gτ̃1

gχ0
1

+ gτ̃1

=
1

2
. (25)

More carefully, though, this is not a strict prediction of
our MSSM setup for a stau NLDP, and should be in-
terpreted just as an upper limit. In fact, if we have
other SUSY particles that are quasi-degenerate in mass
with the LSP, and if they then coannihilate and decou-
ple from the neutralino at a later time than the stau,
either through mode (i) and then immediately decaying
into neutralinos (in all explicit examples, the decay into
staus is strongly suppressed compared to the decay into
neutralinos), or through mode (ii), then fφ is reduced to

fφ =
gτ̃1∑n
i=1 gi

. (26)

where the sum in the denominator involves the neu-
tralino, the stau and all SUSY particles with Tcfo lower
than the Tcfo for staus.

In particular, if the lightest neutralino is a nearly-pure
higgsino, then the next-to-lightest neutralino will also be
a higgsino very nearly degenerate in mass, and the light-
est chargino will also be nearly degenerate in mass, with
mass splittings possibly smaller than mτ . In this case,
charginos and neutralinos will be kept in collisional equi-
librium through scatterings on (νl, l) pairs. At the same
time, the collisional decoupling of staus might be slightly
delayed because of chargino-stau conversions through the
emission of a photon and absorption of a tau neutrino;
however this second process has a Yukawa suppression (as
we are considering Higgsino-like charginos) compared to
the first, and hence it is still guaranteed that the stau
decoupling temperature is larger than the chargino Tcfo

temperature. Since the mass splitting between neutralino
and chargino and that between lightest neutralino and
next-to-lightest neutralino cannot be smaller than few
tens of MeV (due to loop corrections to the masses), de-
coupling will always happen in mode (ii) and we do not
have to worry about possible stau production in their
decays. Since gχ+ = 4, applying the formula in Eq. (26)
we find fφ = 1/5. In the case of a wino-like lightest
neutralino, instead, the only extra coannihilating part-
ner would be the lightest chargino, yielding fφ = 1/4.
Finally, adding to this picture, e.g., a quasi-degenerate
smuon and selectron, fφ = 1/7 could be obtained.

VIII. LONG LIVED STAU NLSPS IN SAMPLE

MINIMAL MODELS

We provide a few examples of well motivated theoret-
ical scenarios where neutralino-stau degeneracy occurs,
possibly in connection with further coannihilating part-
ners driving low values of fφ. In surveying the possible
models, the criterion we take here is that of the com-

position of the lightest neutralino in terms of its dom-
inating gauge eigenstate components. We thus outline
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bino-, higgsino- and wino-like lightest-neutralino bench-
mark scenarios.

A. A case with fφ = 1/2: Binos in the mSUGRA

model

As we mentioned above, in the framework of minimal
supergravity (mSUGRA) [21] one of the few cosmologi-
cally allowed regions of parameter space is the tail where
the neutralino and the stau are quasi-degenerate. In this
case, coannihilations reduce the exceedingly large bino-
like neutralino relic abundance to cosmologically accept-
able values for neutralino masses up to around 600 GeV.
Coannihilation effects depend on the relative mass split-
ting between the two coannihilating species. Requiring a
mass splitting as small as those found above amounts, as
far as the neutralino relic density is concerned, to effec-
tively setting mχ0

1
= mτ̃1

. This, in turns, sets the mass
of the neutralino-stau system once a particular value of
the relic abundance is required. We plot in Fig. 8 points
fulfilling at once mχ0

1
= mτ̃1

and Ωχ0
1

= ΩCDM ≃ 0.113,
the latter being the central value as determined from the
analysis of CMB data [1]. Result are shown in the (mχ0

1
-

tan β) plane, with tanβ the ratio of the vacuum expecta-
tion values of the two neutral components of the SU(2)
Higgs doublets, and at a fixed value of the trilinear cou-
pling A0 = 0 (this latter quantity is, however, not crucial
here). The solid line corresponds to negative values of
the Higgsino mass parameter µ, while the dashed line
corresponds to positive values of µ. Notice that at µ < 0
the accidental overlap of the heavy Higgs resonance with
the coannihilation strip, around tanβ = 43, shifts the
neutralino masses to larger values. We point out that
the two requirements of mass degeneracy and of the cor-
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where we plot the relevant mass splittings of the chargino-
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rect relic density determine, at a given value of tanβ, the
required mass of the neutralino-stau system, thus solving
the residual mSUGRA parameter space degeneracy, and
making the present framework testable and predictive.

In the minimal configuration we have considered, only
the lightest neutralino and the lightest stau are playing
a role, hence fφ = 1/2. However, since the mass splitting
between the lightest stau and lightest smuon and selec-
tron is rather small, assuming a slight departure from
universality in the scalar sector, two additional quasi-
degenerate scalar particles can be obtained and the frac-
tion of charged dark matter reduced to fφ = 1/4.

B. A case with fφ = 1/5: Higgsino-like neutralinos

When the µ term is lighter than the gaugino masses
M1 and M2, the lightest neutralino gets dominated by
the higgsino component. This situation occurs, again
within the mSUGRA model, in the so-called hyperbolic
branch/focus point (HB/FP) region [40, 41], where large
values of the common soft breaking scalar mass m0 drive
µ to low values. In this region, scalars are naturally
heavy, at least in the minimal setup; however, the occur-
rence of non-universalities in the scalar sector [42] may
significantly affect the sfermion mass pattern. In partic-
ular, in a SUSY-GUT scenario, soft breaking sfermion
masses get contributions from D-terms whenever the
GUT gauge group is spontaneously broken with a reduc-
tion of rank [43]. Light staus may naturally occur, for
instance when the weak hypercharge D-term dominates
and features negative values. In this case the hierar-
chy between diagonal entries in the soft supersymmetry-

breaking scalar mass matrices is m2
E ≪ m2

U,D,Q,L. The

m2
L term may also be lowered in presence of additional

D-terms originating from the breaking of further U(1)
symmetries.

The relic neutralino abundance is here fixed by the
interplay of multiple chargino-stau-neutralino coannihi-
lations. In the limit of pure higgsino, the dynamics of
these processes fixes the value of µ yielding a given relic
neutralino abundance. On the other hand, a mixing with
the bino component along the borders of the HB/FP
region may entail a larger spread in the allowed mass
range, affecting the χ0

1 higgsino fraction. We sketch the
situation in Fig. 9, where we resort, for computational
ease, to a low-energy parameterization of the above out-
lined scenario. The smaller frame shows the points on
the (µ, M1) plane that produce the required amount of
relic neutralinos. The larger frame reproduces the val-
ues of the chargino-neutralino and neutralino–next-to-
lightest-neutralino mass splitting; the lines end in the
pure-higgsino regime. Suitable models, in the present
framework, must also fulfill the mass splitting require-
ment mχ̃2,χ̃+

1
− mχ0

1
< mτ . This enforces the allowed

neutralino mass range, at tanβ = 50, between 870 and
880 GeV. Had we lowered the value of tanβ, the corre-
sponding mχ0

1
range would only have shifted to masses

just a few tens of GeV lighter.

As we have already mentioned, since we are dealing
with a case with two neutralinos, a chargino and a stau
quasi-degenerate in mass, we find fφ = 1/5. Again, a
smuon and a selectron can be added to this to shift the
charged particle fraction to fφ = 1/7.

C. A case with fφ = 1/4: Wino-like neutralinos

A benchmark case where the lightest neutralino is
wino-like is instead provided by the minimal Anomaly
mediated SUSY breaking (mAMSB) scenario [22]. In this
framework, tachyonic sfermion masses are cured by pos-
tulating a common scalar mass term, m0. The lightest
sfermion turns out to correspond to the lightest stau τ̃1

again. The latter, at suitably low m0 values, may be
degenerate in mass with the lightest neutralino. We per-
formed a scan of the mAMSB parameter space, requir-
ing mχ0

1
≃ mτ̃1

, and found that the correct relic abun-
dance requires the neutralino masses to lie in the range
1250 . mχ0

1
. 1600 GeV, with the lower bound hold-

ing for small values of tanβ, while the higher for larger
ones. The chargino-neutralino mass splitting is always
below the τ mass, since χ0

1 in mAMSB is always a very
pure wino, and it has large masses. We finally remark
that here, as in the case of higgsinos, the occurrence
of stau coannihilations raises the neutralino relic abun-
dance, contrary to the standard result with a bino-like
LSP.

Since, in this case, we have one neutralino, a chargino
and a stau quasi-degenerate in mass, we find fφ = 1/4.
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e�1 �01� ��W ff 0
e�1 �01� ��H+ ff 0

e�1 ���+i f 0~f f�01(a) (b) ()
FIG. 10: A few Feynman diagrams for four-body final states
for the process τ̃1 → χ0

1 ντ f f̄ ′,. Diagram (a) is the dom-
inant diagram; diagrams of type (b) are sub-dominant, and
diagrams of type (c) are sub-sub-dominant.

D. The Stau lifetime

The τ̃1 four-body decay proceeds through diagrams of
the types sketched in Fig. 10. They come in three sets:
those with W exchange, those with H± exchange, and
those with a sfermion exchange. However, since ∆m ≡
mτ̃1

− mχ0
1

is much smaller than any supersymmetric-
particle mass, the virtuality of all diagrams except those
featuring a τ exchange (diagrams (a) and (b) in the
Figure) is extremely large. Hence all diagrams but
those with a τ exchange will be suppressed by a fac-
tor (mτ/mSUSY)4 ∼ 10−8, and the interferences with the
dominating diagrams by a factor (mτ/mSUSY)2 ∼ 10−4.
Of the two diagrams with a τ exchange, however, the one
with the H± exchange has a Yukawa suppressed H±f f̄ ′

vertex, which gives a suppression, with respect to the
W -exchange diagram,

∼ (mµ tanβ/mW )2(mτ tan β/mW )2 ∼ 10−7 − 10−3

for tanβ = 5 − 50
(27)

in the most favorable muonic final channel. Notice that
the chirality structure of the couplings entails that no
interference between these two diagrams is present. Di-
agrams with a charged Higgs or a sfermion exchange are
moreover further suppressed with respect to those with a
W exchange by a factor (mW /mSUSY)4 which, depending
on the SUSY spectrum, can also be relevant.

In this respect, a very good approximation to the re-
sulting stau lifetime is obtained by considering only the
first diagram, whose squared amplitude reads

|A|2 =
∑

final states

16(g2/
√

2)4 (pντ · pf )

((pτ )2 − m2
τ )

2
((pW )2 − m2

W )
2×

×
[
|VR|2

(
2(pχ0

1
· pτ )(pτ · pf̄ ′) − (pτ )2(pχ0

1
· pf̄ ′)

)
+

+m2
τ |VL|2(pχ0

1
· pf̄ ′) − 2mχ0

1
mτRe(V ∗

L VR)(pτ · pf̄ ′)
]
,

(28)

with VL,R the left- and right-handed coupling of the τ̃1

in the τ̃1τχ0
1 vertex. The sum is extended over the final
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FIG. 11: The stau lifetime, as a function of the mass splitting
with the lightest neutralino. The parameter space points are
defined by the two requirements mχ0

1
≃ mτ̃1

and Ωχ0
1

= 0.11.

For the wino and higgsino cases tan β = 50, while in all cases
A0 = 0 and µ > 0.

states of Eq. (17). For numerical purposes, the four-
particles phase space is integrated with the use of the
Monte Carlo routine Rambo, with final-state finite-mass
corrections for all final states.

Fig. 11 shows the stau lifetime for a sample of the
supersymmetric scenarios outlined in the preceding sec-
tions. We fully account for threshold effects in the
phase space, with the four contributions from electronic,
muonic, and first- and second-generation quarks. The
quark masses have been set to their central experimental
values [44]. For the case of higgsinos, we reproduce the
two extreme regimes when the m2

L term is large (no Left-
Right mixing) and when m2

L ≃ m2
R (maximal Left-Right

mixing). The differences in the lifetimes are traced back
to overall mass effects and to the values of the VL and
VR couplings (for instance, |VL| ≫ |VR| in the wino case,
while the opposite regime holds for the case of higgsinos
and no LR-mixing). In any case, we conclude that life-
times of the order of 1 − 100 years are obtained with a
mass splitting ∆m = 20 − 70 MeV.

IX. DARK MATTER SEARCHES AND

COLLIDER SIGNATURES

Unlike other charged long-lived NLDP scenarios, the
framework we outlined above has the merit of being, in
principle, detectable at dark-matter–detection and col-
lider experiments.

We show in Fig. 12 the spin-independent neutralino-
proton scattering cross section for the mSUGRA
parameter-space points of Fig. 8, and for the higgsino
and wino (mAMSB) cases, as discussed in sec. VIII B
and VIII C, together with the current exclusion limits
from the CDMS experiment [45], and the future reach
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FIG. 12: The spin-independent neutralino-proton scattering
cross section, as a function of the neutralino mass, along the
parameter-space points outlined in Fig. 8. We also indicate
the current exclusion limits from the CDMS experiment [45],
and the expected reach of the XENON 1-ton facility [46].

of the XENON 1-ton facility [46]. For binos, at µ > 0
most points lie within less than one order of magnitude
with respect to the future projected sensitivity, making
it conceivable that this scenario may be tested in next-
generation facilities. For negative µ, destructive interfer-
ence among the lightest- and heavy-Higgs contributions
lead instead to cancellations in σχ0

1P . Finally, higgsino
and wino detection rates respectively lie one and two or-
ders of magnitude below the future expected sensitivity.

Indirect-detection experiments look less promising,
even for winos and higgsinos, which always feature un-
comfortably large neutralino masses. We checked, for in-
stance, that the expected muon flux from the Sun, gener-
ated by neutralino pair annihilations, is at most 10−(4−5)

muons per km2 per year, far below the sensitivity of fu-
ture neutrino telescopes like IceCube [47].

Turning to collider experiments, considering as the
searching tool the usual missing transverse-energy chan-
nels, dedicated studies have shown that the mSUGRA
coannihilation strip will be within LHC reach, mainly
through in a mass range that extends up to mχ0

1
. 550

GeV along the coannihilation strip, quite independently
of tanβ [48]. Concerning higgsinos and winos, instead,
the relevant mass range we study here appears to be be-
yond standard LHC searches [57].

Even at high-energy colliders, the peculiar and distinc-
tive feature of this scenario is however represented by
the long-lived stau. The production of what have some-
times been dubbed long-lived charged massive particles

(CHAMP’s) [49] has been repeatedly addressed. Exclu-
sion limits were determined by the CDF Collaboration
[49, 50], and the future reach of the LHC and of a future
Linear Collider has been also assessed for this broad class

of exotic new particles [51, 52]. The case of a stable3 stau
has been, in particular, considered several times, since it
occurs in the context of various SUSY-breaking models,
like gauge-mediated SUSY-breaking (GMSB) scenarios
[53]; see also, e.g., Ref. [54, 55]. We remark that, con-
trary to GMSB, in the present framework the production
of long lived staus at accelerators is expected to come
along together with the production of neutralinos, thus
making the two scenarios distinguishable, at least in prin-
ciple.

A long-lived stau would behave as a highly penetrat-
ing particle, appearing in the tracking and muon cham-
bers of collider detectors with a small energy deposit in
calorimeters. Staus, depending on their velocities, would
produce either highly-ionizing tracks in the low-β regime,
or, if quite relativistic, they would appear similar to en-
ergetic muons. In this latter case, one could look at ex-
cesses of dimuon or multi-lepton events as a result of su-
perparticle production; for example, considering the ra-
tio σ(µ+µ−)/σ(e+e−). In case additional particles have
masses close to the neutralino-stau system, the total pro-
duction cross section of superparticles would be greatly
enhanced. Long-lived charginos may also give interesting
accelerator signals [56].

While the reach of the Tevatron appears to be insuf-
ficient to probe the parameter space of the models we
are considering here [54], the discovery of this kind of
scenarios at the LHC, though challenging, looks quite
conceivable, particularly in the case of binos. In fact,
even in the less promising case in which the particle spec-
trum does not feature any particle close in mass with the
χ0

1 − τ̃1 system, the highly-ionizing–track channel should
cover a mass range widely overlapping that indicated in
Fig. 8. On the other hand, excess dimuon events could
provide an independent confirmation, although the 5-σ
LHC reach for CHAMP’s in this channel alone has been
assessed to lie around 300 GeV [54]. Moreover, if ad-
ditional coannihilating particles (charginos, smuons, or
selectrons) are present, the discovery at the LHC would
certainly look even more promising [55].

A further recently proposed detection technique for
long-lived staus is represented by trapping these particles
into large water tanks placed outside the LHC detectors
[58]. Following the results of Ref. [58], a 10-kton water
tank may be capable of trapping more than 10 staus per
year, if the mass mτ̃1

≃ 400 GeV. The subsequent decays
could then be studied in a background-free environment.
More than twice as many sleptons would also get trapped
in the LHC detectors, although in this case a study of the
stau properties would look more challenging [58].

3 Here stable simply means that the decay length is much larger
than the detector size.
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X. CONCLUSIONS

We have examined a scenario in which a fraction fφ of
the cold-dark-matter component in the Universe is gen-
erated in the decay of long-lived charged particles and
shown that a scale-dependent (or ‘running’) spectral in-
dex is induced. The power spectrum on scales smaller
than the horizon size when the age of the Universe is
equal to the charged-particle lifetime gets suppressed by
a factor (1−fφ)2. Such a feature might be singled out un-
ambiguously by future measurements of the power spec-
trum of neutral hydrogen through the 21-cm line, obtain-
ing direct information on the charged particle lifetime
and fφ.

On the contrary, current and future tests for depar-
tures from a scale-invariant power spectrum based on
Lyman-α data may fail to uniquely identify the scenario
we propose. In fact, we have estimated the modifica-
tions to the non-linear power spectrum at the redshifts
and wavenumbers currently probed by Lyman-α forest
data, and shown that these resemble (but are different
in detail) those in models with a constant running of the
spectral index αs. We expect, based on this resemblance,
models with fφ in the range 1/2 − 1/7 (as predicted in
some explicit models we have constructed) to be compat-
ible with current cosmological data for lifetimes in the
range 1 − 20 yr. We have also verified that constraints
from the primordial light-element abundances and dis-
tortions to the CMB spectrum are not violated.

From the particle-physics point of view, we have shown
that the proposed scenario fits nicely in a picture in which
the lightest neutralino in SUSY extensions of the stan-
dard model appears as the cold-dark-matter candidate,

and a stau nearly degenerate in mass with the neutralino
as the long-lived charged counterpart. A small mass split-
ting forces the stau to be quasi-stable, since the phase
space allowed in the its decay process gets sharply re-
duced. At the same time, it implies that neutralino and
stau are strongly linked in the process of thermal decou-
pling, with the charged species playing the major role.
Owing to these coannihilation effects, the current neu-
tralino thermal relic abundance is compatible with the
value inferred from cosmological observatations and, at
early times, the stau thermal relic component is at the
correct level.

We have described several explicit realizations of this
idea in minimal supersymmetric frameworks, including
the minimal supergravity scenario, namely the supersym-
metric extension of the standard model with smallest pos-
sible parameter space. We have pointed out that charged
dark matter fraction from 1/2 to 1/7 (or even lower) can
be obtained and that stau lifetimes larger than 1 yr are
feasible. We have also shown that some of the models we
have considered may be detected in future WIMP direct
searches, and discussed the prospects of testing the most
dramatic feature of the model we propose, i.e. the pro-
duction of long-lived staus at future high energy particle
colliders.
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